ΠšΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΊΠ° ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ тСста Π›ΡŽΡˆΠ΅Ρ€Π° ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΈ дСпрСссивности ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ мобильного ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠ³ΠΎ прилоТСния

Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСрспСктивным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ скрининга, диагностики, лСчСния ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ психичСских расстройств. Нами Π±Ρ‹Π»Π° прСдпринята ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ способ выдСлСния срСди людСй, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠ΅ мобильноС ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‚Π΅Ρ…, Ρƒ ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ риск развития психичСских расстройств Π°Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚Ρ€Π΅Π²ΠΎΠΆΠ½ΠΎΠ³ΠΎ спСктра.

ЦСль. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρ‹ ΠΎ способности ΠΊΡ€Π°Ρ‚ΠΊΠΎΠΉ (Π²ΠΎΡΡŒΠΌΠΈΡ†Π²Π΅Ρ‚ΠΎΠ²ΠΎΠΉ) вСрсии тСста Π›ΡŽΡˆΠ΅Ρ€Π°, прСдставлСнной Π² составС ΠΈΠ³Ρ€Ρ‹ для ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… устройств, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π°Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΈ Ρ‚Ρ€Π΅Π²ΠΎΠΆΠ½Ρ‹ΠΌΠΈ расстройствами ΠΈ рСспондСнтов Π±Π΅Π· психичСских расстройств.

ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдовании приняли участиС 62 рСспондСнта Π±Π΅Π· психичСских расстройств (возраст МС=22 Π³ΠΎΠ΄Π°, 14 муТского ΠΏΠΎΠ»Π° ΠΈ 48 ТСнского) ΠΈ 17 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с установлСнным Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ Π°Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Π²ΠΎΠΆΠ½ΠΎΠ³ΠΎ расстройства (возраст МС=53 Π³ΠΎΠ΄Π°, 7 муТского ΠΏΠΎΠ»Π° ΠΈ 10 ТСнского), проходящих Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² РСспубликанском Π½Π°ΡƒΡ‡Π½ΠΎ-практичСском Ρ†Π΅Π½Ρ‚Ρ€Π΅ психичСского Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡ. Для ΠΎΡ†Π΅Π½ΠΊΠΈ выраТСнности дСпрСссивной симптоматики Π½Π°ΠΌΠΈ использовался ЭкспрСсс-опросник дСпрСссивной симптоматики QIDS-SR16, состоящий ΠΈΠ· 16 вопросов, с ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ М.А. АссановичСм критСриями раздСлСния рСспондСнтов Π½Π° Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠΎ выраТСнности симптоматики. Π’Π°ΠΊΠΈΡ… Π³Ρ€ΡƒΠΏΠΏ 6: ΠΊΡ€Π°ΠΉΠ½Π΅ Π½ΠΈΠ·ΠΊΠΈΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ, Π½ΠΈΠ·ΠΊΠΈΠΉ, ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ сниТСнный, срСдний, высокий ΠΈ ΠΊΡ€Π°ΠΉΠ½Π΅ высокий. Для ΠΎΡ†Π΅Π½ΠΊΠΈ уровня ситуативной трСвоТности ΠΌΡ‹ использовали опросник ситуативной трСвоТности Π‘ΠΏΠΈΠ»Π±Π΅Ρ€Π³Π°-Π₯Π°Π½ΠΈΠ½Π° ΠΈΠ· 20 вопросов. Π’ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΌ ΠΈΠ³Ρ€ΠΎΠ²ΠΎΠΌ мобильном ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ рСспондСнтам ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π»ΠΎΡΡŒ ΠΏΡ€ΠΎΠΉΡ‚ΠΈ ΠΈΠ³Ρ€Ρƒ, Π² процСссС прохоТдСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½ΠΈ ΠΎΡ‚Π²Π΅Ρ‡Π°Π»ΠΈ Π½Π° Π²ΠΎΡΡŒΠΌΠΈΡ†Π²Π΅Ρ‚ΠΎΠ²ΡƒΡŽ Π²Π΅Ρ€ΡΠΈΡŽ тСста Π›ΡŽΡˆΠ΅Ρ€Π°. Она ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π²Ρ‹Π±ΠΎΡ€ рСспондСнтом ΠΈΠ· 8 Ρ†Π²Π΅Ρ‚ΠΎΠ² Ρ‚Π΅Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ приятны Π΅ΠΌΡƒ Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚, ΠΈ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π΅Π½ΠΈΠ΅ Π²Ρ‹Π±ΠΎΡ€Π° Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° всС Ρ†Π²Π΅Ρ‚Π° Π½Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΏΡ€ΠΎΡ€Π°Π½ΠΆΠΈΡ€ΠΎΠ²Π°Π½Ρ‹. По ΠΈΡ‚ΠΎΠ³Π°ΠΌ Π²Ρ‹Π΄Π°Π²Π°Π»Π°ΡΡŒ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ†ΠΈΡ„Ρ€, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰Π°Ρ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠ΅ рСспондСнтом Ρ†Π²Π΅Ρ‚ΠΎΠ² (Π΄Π°Π»Π΅Π΅ Π½ΠΎΠΌΠ΅Ρ€Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ†Π²Π΅Ρ‚Π°ΠΌ: 0-сСрый, 1-Ρ‚Ρ‘ΠΌΠ½ΠΎ-синий, 2-синС-Π·Π΅Π»Ρ‘Π½Ρ‹ΠΉ, 3-красно-ΠΆΡ‘Π»Ρ‚Ρ‹ΠΉ, 4-ΠΆΡ‘Π»Ρ‚ΠΎ-красный, 5-Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²Ρ‹ΠΉ, 6-ΠΊΠΎΡ€ΠΈΡ‡Π½Π΅Π²Ρ‹ΠΉ, 7-Ρ‡Ρ‘Ρ€Π½Ρ‹ΠΉ) ΠΎΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΊ Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡ΠΈΡ‚Π°Π΅ΠΌΠΎΠΌΡƒ Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ИсслСдованиС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π½Π° Π°Π½ΠΎΠ½ΠΈΠΌΠ½ΠΎΠΉ основС. Для статистичСского Π°Π½Π°Π»ΠΈΠ·Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² использовалась ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° SPSS.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘Π°Π»Π»Ρ‹ QIDS-SR16 статистичСски достовСрно Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΈ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΉ Манна-Π£ΠΈΡ‚Π½ΠΈ, p<0,001). Π‘Π°Π»Π»Ρ‹ опросника ситуативной трСвоТности Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π² связи с Ρ‡Π΅ΠΌ Π΄Π°Π»Π΅Π΅ ΠΌΡ‹ описываСм ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ опросник дСпрСссивной симптоматики. Для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² тСста Π›ΡŽΡˆΠ΅Ρ€Π° Π±Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ частоты нахоТдСния ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ†Π²Π΅Ρ‚Π° Π½Π° ΠΊΠ°ΠΆΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ†Π²Π΅Ρ‚ΠΎΠ² ΠΎΡ‚ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π΄ΠΎ Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡ΠΈΡ‚Π°Π΅ΠΌΠΎΠ³ΠΎ Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. ΠŸΡ€ΠΈ сравнСнии Π΄Π°Π½Π½Ρ‹Ρ… частот с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ критСрия ΠšΡ€Π°ΡΠΊΠ΅Π»Π°-УолСса Π±Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ распрСдСлСниС Ρ†Π²Π΅Ρ‚ΠΎΠ² Π½Π° пятой ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ статистичСски достовСрно различаСтся ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ ΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (p<0,005) (рисунок 1). ΠŸΡ€ΠΈ сравнСнии часотот Ρ†Π²Π΅Ρ‚ΠΎΠ² Π² ΡˆΠ΅ΡΡ‚ΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…, выдСляСмых опросником дСпрСссивной симптоматики, распрСдСлСниС Ρ†Π²Π΅Ρ‚ΠΎΠ² Π½Π° ΡˆΠ΅ΡΡ‚ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ достовСрно Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΎΡΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ (p<0,05). Π”Π°Π»Π΅Π΅ для опрСдСлСния ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ Ρ†Π²Π΅Ρ‚Π°, доля ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ отличаСтся Ρƒ контроля ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π±Ρ‹Π» ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½ тСст Ρ…ΠΈ-ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚. Π’Ρ‹ΡΡΠ½ΠΈΠ»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ доля сСрого Ρ†Π²Π΅Ρ‚Π° Π½Π° пятой ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ достовСрно большС Ρƒ рСспондСнтов ΠΈΠ· Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎ ΡΡ€Π°Π²Π½Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ (11,3% Ρƒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΈ 41,2% Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², p<0,05). Π’Π°ΠΊΠΆΠ΅ доля Ρ‡Ρ‘Ρ€Π½ΠΎΠ³ΠΎ Ρ†Π²Π΅Ρ‚Π° Π½Π° ΡˆΠ΅ΡΡ‚ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π±Ρ‹Π»Π° достовСрно Π²Ρ‹ΡˆΠ΅ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ с ΠΊΡ€Π°ΠΉΠ½Π΅ Π½ΠΈΠ·ΠΊΠΈΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ дСпрСссивной симптоматики ΠΏΠΎ ΡΡ€Π°Π²Π½Π½ΠΈΡŽ с Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ с Π½ΠΈΠ·ΠΊΠΈΠΌ Π΅Ρ‘ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ (52,2% ΠΈ 10,5% соотвСтствСнно, p<0,05).

Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠšΡ€Π°Ρ‚ΠΊΠ°Ρ вСрсия тСста Π›ΡŽΡˆΠ΅Ρ€Π°, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π² составС ΠΈΠ³Ρ€Ρ‹ для ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… устройств, позволяСт достовСрно Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ ΠΈ Π³Ρ€ΡƒΠΏΠΏΡƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π°Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΈ Ρ‚Ρ€Π΅Π²ΠΎΠΆΠ½Ρ‹ΠΌΠΈ расстройствами, Π° Ρ‚Π°ΠΊΠΆΠ΅ рСспондСнтов с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ уровнями выраТСнности дСпрСссивной симптоматики. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Ρ‰Π°ΡŽΡ‚ Π½Π° сСбя пятый ΠΈ ΡˆΠ΅ΡΡ‚ΠΎΠΉ ΠΏΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ†Π²Π΅Ρ‚Π°, Π³Π΄Π΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Ρ‡Π°Ρ‰Π΅ рСспондСнтов ΠΈΠ· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ставили Π½Π° ΠΏΡΡ‚ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ сСрый Ρ†Π²Π΅Ρ‚, Π° рСспондСнты с ΠΊΡ€Π°ΠΉΠ½Π΅ Π½ΠΈΠ·ΠΊΠΈΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ дСпрСссивной симптоматики Ρ‡Π°Ρ‰Π΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π½ΠΈΠ·ΠΊΠΈΠΌ Π΅Ρ‘ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ ставили Π½Π° ΡˆΠ΅ΡΡ‚ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ Ρ‡Ρ‘Ρ€Π½Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚.

ΠžΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΡ исслСдования. НСбольшой ΠΎΠ±ΡŠΡ‘ΠΌ Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΊΠ°ΠΆΠ°Ρ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, для прСодолСния Ρ‡Π΅Π³ΠΎ Π½Π°ΠΌΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ дальнСйшСС Π΅Ρ‘ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅. ΠšΡ€Π°ΠΉΠ½Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ рСспондСнтами условий тСста Π›ΡŽΡˆΠ΅Ρ€Π°, Π² частности, нСобходимости Π΄Π°Π²Π°Ρ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚ ΠΏΡ€ΠΎ ощущСния Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚. Π£Π»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ Π² Π΄Π°Π½Π½ΠΎΠΉ области ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ достигнуто ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΎΠΊ.

Calibration and application of the Lusсher test when measuring the depression of users of a mobile gaming application

Introduction. Information Technology (IT) is a promising and quickly developing scientific and practical field. One of its traits is its ability to provide big numbers of people with everyday access to information and tools. That is one of the reasons IT is a popular topic for discussion and research in modern medicine which is already being heavily investigated and applied in somatic medicine (e.g. diabetes, hypertension). There are also multiple projects that aim to develop tools and methods for helping people with psychiatric disorders, most common being affective disorders (bipolar disorder, depression)[Park et al., 2019]. However, meta-analyses have shown that many of such applications lack clinically validated evidence of their efficacy[Wang et al., 2018]. Here we wish to present our first attempt in search for one.

When planning our project and the accompanying studies, our thinking was that IT can not only help track measurements or activities performed by the patient but also provide information and help to a larger sample of people that consists of healthy individuals, those with preclinical symptoms and manifesting psychiatric conditions. So, our goal was to develop a tool (a mobile application for availability purposes) that can help measure the level of psychiatric symptoms in any given person and, without making any clinical diagnoses, offer that person information about probable conditions they might have and help they can get. Later we plan to add modes that will help the person using the application to do and track activities that can be helpful as additional methods for making their psychiatric condition better and more stable.

Since we wanted the application to be interesting and available for the majority of the population, we decided to make it a mobile game and to make tests inside of it less formal. The first test we included was the Lusсher test as it is a rather well-investigated in relation to mood disorders tool that can be used as a screening method [Barrick et al., 2002]. The first dimension of psychiatric conditions we examined was affective disorders since they are common and in many cases their severity does not prevent people from using applications such as ours.

Methods. The participants were 62 healthy respondents (age Me=22, 14 male and 48 female) that comprised a control group and 21 respondents with a diagnosis of an affective disorder (F3x, F4x, ICD-10) undergoing treatment at the Republican Research and Practical Center for Mental Health in Minsk, Belarus (age Me=44, 9 male and 12 female). For measuring the symptoms of depressed mood we used an QIDS-SR16 inventory with its results division criteria modified by Assanovich. The inventory consists of 16 items and helps divide the respondents into 6 groups based on the severity of symptoms: very low, low, relatively low, moderate, high and very high severity. QIDS-SR16 has the highest sensitivity at the "very low-low" end of the spectrum and we considered it appropriate for our goals since our ultimate aim was to detect disordered mood in the preclinical sample. We compared two groups based on the severity of depressive symptoms using Mann-Whitney U.

The short version of Luscher test includes questions about a color that is most or least preferred at the moment and choice of that color from 8 specific ones. Then, the application arranged the numbers, associated with colors (0-7: 0 - gray, 1 - dark-blue, 2 - blue-green, 3 - red-yellow, 4 - yellow-red, 5 - purple, 6 - brown, 7 - black) into an order of preference from most liked at the moment to least liked. We counted and compared the frequency of each color in each position using Kraskell-Woles criteria in two groups and compared it between individuals with varying levels of depressive symptoms as measured by QIDS-SR16 using Ο‡-square.

The application we developed was on its face a "farm" gaming application in which user is asked to plant trees and vegetables, gather the foods and communicate with 2 characters. Such design allows us to add many other diagnostic tools in the future, such as tracking of different dialogue options when speaking to characters or tapping assessment. For now, however, such nuance were not assessed, but they performed a role of making the Lusсher test placed inside one of the dialogues with a character less visible. We added a "fake" question about colors that the user would prefer in order to also hide the test that was actually assessed. The respondents from control group performed the tests themselves and patients performed them with the help of a member of a research group.

All the results were assessed using SPSS v 20.0.

Results. For the first part of the study we compared patients to the control group based on their QIDS-SR16 scores. The scores differed significantly (Mann-Whitney U, p<0,001). Next, we measured the frequency of each color on each position in the order of preference in the control and patient groups. Then we compared these frequencies with the Kraskell-Woles criteria and it turned out the distribution of color frequencies on the 5th position differed significantly between groups (p<0,001). The graphic representation of frequencies is illustrated in pic.1.

Then we applied another approach that can better illustrate the situation in the general population and not in the strictly clinical setting: we mixed all the respondents and divided them into 6 groups based on the modified QIDS-SR16 criteria. Then we compared color frequencies and found that here the 4th and 6th positions were the most sensitive for the intergroup differences (Kraskell-Woles criteria, p<0,05). However, we needed to distinguish the color that was most prevalent in the positions 4 through 6 and was responsible for the differences found. To accomplish that we used the Ο‡-square test. It turned out the frequency of the gray color was significantly higher in the 5th position in the patient group compared to controls (p<0,05); the proportion of the black color in the 6th position was significantly higher in the group with "very low" level of depressive symptoms compared to the "low" group; the proportion of the gray color in the 6th position was significantly higher in the "low" group compared to "very low"; and proportion of dark-blue color in the 4th position was significantly higher in the "low" group compared to "relatively low".

Discussion. The tendency of depressed people to choose darker colors as more preferred at the moment, rather unexpectedly, has not been previously well documented, compared to other phenomena tied to the Lusсher test[Novovic et al., 1993][Cohen, 1978][Garvey, Luxenberg, 1987]. However, we showed such tendency in clean groups of individuals with clinical diagnosis and without one, which makes our work on the mobile application scientifically based. It is apparent that having only the results from Lusсher test is not sufficient enough to statistically divide people using the application into groups and give them recommendations. However, we can add to it the results of other tests mentioned in the introduction section and combined, such tests can yield psychological and psychopathological traits of an individual that will in turn allow us to place the person using the application into one of the several groups and produce recommendations for them which will be based not on the diagnosis or its absence, which we cannot fully distinguish without clinical observation, but on the preclinical picture displayed by the person.

ΠΠ°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π½Π°ΠΌ
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.